315 research outputs found

    Single Cell Profiling of Circulating Tumor Cells: Transcriptional Heterogeneity and Diversity from Breast Cancer Cell Lines

    Get PDF
    BACKGROUND: To improve cancer therapy, it is critical to target metastasizing cells. Circulating tumor cells (CTCs) are rare cells found in the blood of patients with solid tumors and may play a key role in cancer dissemination. Uncovering CTC phenotypes offers a potential avenue to inform treatment. However, CTC transcriptional profiling is limited by leukocyte contamination; an approach to surmount this problem is single cell analysis. Here we demonstrate feasibility of performing high dimensional single CTC profiling, providing early insight into CTC heterogeneity and allowing comparisons to breast cancer cell lines widely used for drug discovery. METHODOLOGY/PRINCIPAL FINDINGS: We purified CTCs using the MagSweeper, an immunomagnetic enrichment device that isolates live tumor cells from unfractionated blood. CTCs that met stringent criteria for further analysis were obtained from 70% (14/20) of primary and 70% (21/30) of metastatic breast cancer patients; none were captured from patients with non-epithelial cancer (n = 20) or healthy subjects (n = 25). Microfluidic-based single cell transcriptional profiling of 87 cancer-associated and reference genes showed heterogeneity among individual CTCs, separating them into two major subgroups, based on 31 highly expressed genes. In contrast, single cells from seven breast cancer cell lines were tightly clustered together by sample ID and ER status. CTC profiles were distinct from those of cancer cell lines, questioning the suitability of such lines for drug discovery efforts for late stage cancer therapy. CONCLUSIONS/SIGNIFICANCE: For the first time, we directly measured high dimensional gene expression in individual CTCs without the common practice of pooling such cells. Elevated transcript levels of genes associated with metastasis NPTN, S100A4, S100A9, and with epithelial mesenchymal transition: VIM, TGFß1, ZEB2, FOXC1, CXCR4, were striking compared to cell lines. Our findings demonstrate that profiling CTCs on a cell-by-cell basis is possible and may facilitate the application of 'liquid biopsies' to better model drug discovery

    Crowdcloud: A Crowdsourced System for Cloud Infrastructure

    Get PDF
    The widespread adoption of truly portable, smart devices and Do-It-Yourself computing platforms by the general public has enabled the rise of new network and system paradigms. This abundance of wellconnected, well-equipped, affordable devices, when combined with crowdsourcing methods, enables the development of systems with the aid of the crowd. In this work, we introduce the paradigm of Crowdsourced Systems, systems whose constituent infrastructure, or a significant part of it, is pooled from the general public by following crowdsourcing methodologies. We discuss the particular distinctive characteristics they carry and also provide their “canonical” architecture. We exemplify the paradigm by also introducing Crowdcloud, a crowdsourced cloud infrastructure where crowd members can act both as cloud service providers and cloud service clients. We discuss its characteristic properties and also provide its functional architecture. The concepts introduced in this work underpin recent advances in the areas of mobile edge/fog computing and co-designed/cocreated systems

    MAIT cells launch a rapid, robust and distinct hyperinflammatory response to bacterial superantigens and quickly acquire an anergic phenotype that impedes their cognate antimicrobial function: Defining a novel mechanism of superantigen-induced immunopathology and immunosuppression

    Get PDF
    Superantigens (SAgs) are potent exotoxins secreted by Staphylococcus aureus and Streptococcus pyogenes. They target a large fraction of T cell pools to set in motion a "cytokine storm" with severe and sometimes life-threatening consequences typically encountered in toxic shock syndrome (TSS). Given the rapidity with which TSS develops, designing timely and truly targeted therapies for this syndrome requires identification of key mediators of the cytokine storm's initial wave. Equally important, early host responses to SAgs can be accompanied or followed by a state of immunosuppression, which in turn jeopardizes the host's ability to combat and clear infections. Unlike in mouse models, the mechanisms underlying SAg-associated immunosuppression in humans are ill-defined. In this work, we have identified a population of innate-like T cells, called mucosa-associated invariant T (MAIT) cells, as the most powerful source of pro-inflammatory cytokines after exposure to SAgs. We have utilized primary human peripheral blood and hepatic mononuclear cells, mouse MAIT hybridoma lines, HLA-DR4-transgenic mice, MAIThighHLA-DR4+ bone marrow chimeras, and humanized NOD-scid IL-2Rγnull mice to demonstrate for the first time that: i) mouse and human MAIT cells are hyperresponsive to SAgs, typified by staphylococcal enterotoxin B (SEB); ii) the human MAIT cell response to SEB is rapid and far greater in magnitude than that launched by unfractionated conventional T, invariant natural killer T (iNKT) or γδ T cells, and is characterized by production of interferon (IFN)-γ, tumor necrosis factor (TNF)-α and interleukin (IL)-2, but not IL-17A; iii) high-affinity MHC class II interaction with SAgs, but not MHC-related protein 1 (MR1) participation, is required for MAIT cell activation; iv) MAIT cell responses to SEB can occur in a T cell receptor (TCR) Vβ-specific manner but are largely contributed by IL-12 and IL-18; v) as MAIT cells are primed by SAgs, they also begin to develop a molecular signature consistent with exhaustion and failure to participate in antimicrobial defense. Accordingly, they upregulate lymphocyte-activation gene 3 (LAG-3), T cell immunoglobulin and mucin-3 (TIM-3), and/or programmed cell death-1 (PD-1), and acquire an anergic phenotype that interferes with their cognate function against Klebsiella pneumoniae and Escherichia coli; vi) MAIT cell hyperactivation and anergy co-utilize a signaling pathway that is governed by p38 and MEK1/2. Collectively, our findings demonstrate a pathogenic, rather than protective, role for MAIT cells during infection. Furthermore, we propose a novel mechanism of SAg-associated immunosuppression in humans. MAIT cells may therefore provide an attractive therapeutic target for the management of both early and late phases of severe SAg-mediated illnesses

    Fragile finance: The revenue models of oppositional news outlets in repressive regimes

    Get PDF
    For journalists promoting the free flow of information in repressive or restrictive media environments, the issue of financial sustainability is complex. Both media in exile (out-of-country news outlets feeding independent information into the country of origin) and news outlets in restrictive news environments (in-country providing counter-information) exist in flawed market situations and often rely on grant funding. This is the first academic study of the revenue streams of these media, providing scarce empirical data and a typology of funding structures of these media. This article examines three main revenue categories: grant funding, earned income and donations. The major factors influencing revenue streams compared to online media startups in open markets are discussed. The article finds significant barriers to revenue creation and identifies the need for alternative approaches, particularly partnerships, to promote economic resilience for media under threat

    Scenario-Based Design Theorizing:The Case of a Digital Idea Screening Cockpit

    Get PDF
    As ever more companies encourage employees to innovate, a surplus of ideas has become reality in many organizations – often exceeding the available resources to execute them. Building on insights from a literature review and a 3-year collaboration with a banking software provider, the paper suggests a Digital Idea Screening Cockpit (DISC) to address this challenge. Following a design science research approach, it suggests a prescriptive design theory that provides practitioner-oriented guidance for implementing a DISC. The study shows that, in order to facilitate the assessment, selection, and tracking of ideas for different stakeholders, such a system needs to play a dual role: It needs to structure decision criteria and at the same be flexible to allow for creative expression. Moreover, the paper makes a case for scenario-based design theorizing by developing design knowledge via scenarios

    Golden Rule of Forecasting: Be Conservative

    Get PDF
    This article proposes a unifying theory, or the Golden Rule, or forecasting. The Golden Rule of Forecasting is to be conservative. A conservative forecast is consistent with cumulative knowledge about the present and the past. To be conservative, forecasters must seek out and use all knowledge relevant to the problem, including knowledge of methods validated for the situation. Twenty-eight guidelines are logically deduced from the Golden Rule. A review of evidence identified 105 papers with experimental comparisons; 102 support the guidelines. Ignoring a single guideline increased forecast error by more than two-fifths on average. Ignoring the Golden Rule is likely to harm accuracy most when the situation is uncertain and complex, and when bias is likely. Non-experts who use the Golden Rule can identify dubious forecasts quickly and inexpensively. To date, ignorance of research findings, bias, sophisticated statistical procedures, and the proliferation of big data, have led forecasters to violate the Golden Rule. As a result, despite major advances in evidence-based forecasting methods, forecasting practice in many fields has failed to improve over the past half-century
    corecore